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A note on the compression of air through repeated
shock waves

By J. L. STOLLERY and D. J. MAULL
Department of Aeronautics, Imperial College, University of London

(Received 10 May 1958)

SUMMARY

The results of calculations of the compression of air by
repeated shock waves are compared with the perfect-gas values
given by Evans & Evans (1956). The comparison emphasizes
the increasing divergence of real from perfect-gas results as
shock strengths are raised. The equations relating conditions
across a shock wave are obtained in a convenient form for
solution using a Mollier diagram.
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Figure 1. The displacement vs time diagram.

Figure 1 shows the problem considered. A piston instantaneously
accelerated to a velocity »,, which is subsequently held constant, generates
a shock wave. The wave is reflected from the closed end and the piston
face. The air pressure, density and temperature rise non-isentropically
through the initial and reflected shocks, soon reaching values at which the
excitation of vibrational modes, dissociation, electronic excitation and
finally ionization become important. These real-gas effects are taken into
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account here by using the Mollier diagram of Feldman (1957) prepared
from the real-air tables of Hilsenrath & Beckett (1956). All viscous, heat
transfer and relaxation effects are neglected and the flow is assumed to be
one-dimensional.

The notation is as follows.

n  An integer, referring to a flow region in the time-displacement
diagram (figure 1). Thus H,, p,,, p, and T, are the enthalpy,
density, pressure and temperature in the nth region. The nth
shock wave moves into the (zn—1)th region and has the nth
region behind it.

U, Velocity of the nth shock wave.

u, Flow velocity in the nth region (u, = u, for n odd, u, =0
for n even).

g  Velocity relative to the shock wave.

M, Shock strength = (initial shock velocity)/(speed of sound in
region 0) = U, /a,.
= A pressure of one atmosphere.
The equations for a stationary shock wave are:

energy Hy+3q; = H, + 14}, (1)
momentum Dot poqi=py+p19% (@)
continuity Podo = P11 ()

These may be used for a moving shock wave by superposition of velocities,
giving for the initial shock wave

9 = Uy, g =U~u.
Since u; = u,, the above three equations yield

_ — 1,0 P1+po _ 4 — 2f _P1Po — Up '
=t up(Pl—P0>’ Pt u”(m—m)’ Y= Ty

In the same way the following equations for the first reflected shock
are ‘obtained :

_ _ 1,2fP2tP1 —h — 2 P2P1 — Up ‘
=, zu”(Pz—p)’ Pe=Pn u”(Pz—m)’ Vs = =1 )
Similar formulae may be obtained for further shock reflections. The
general forms of the equations are:

(X

H, ,—H, = %ug(fM), (6)
Prn+1—Pn
Pn+1Pn
Prii—bn = uz( _""‘>) 7)
Al ? Pr+1—"Pn (
U,=—"% (4 for nodd, — for n even).  (8)

" 1- (Pn-—l/Pn)

On the Mollier diagram, figure 2, enthalpy is plotted against entropy
for lines of constant pressure, lines of constant density and lines of constant

2T2
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temperature. Thus any two of these properties defines a point on the
diagram. Given the initial conditions in region 0 and a value for M,
(or piston speed), two values for p; are chosen. The two corresponding
values of H, calculated from (4) are plotted on the Mollier diagram, and
the points joined by a straight line. The two values for the pressure p,
from (4) are also plotted, and the line linking these points will cut that
joining the enthalpy values if the chosen densities are reasonable. The
point of intersection gives the approximate values for conditions in
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Figure 2. Mollier diagram showing method of solution.

region 1. The approximation may be improved by choosing two new
density values just either side of the first intersection point and repeating
the construction. With a little experience this becomes unnecessary.
Now, knowing conditions in region 1, those in region 2 follow from (5) on
using the same graphical construction. Similarly the method can be
used for the other regions. The process is then repeated for further values
of M, A comparison with Feldman’s electronically-computed values
for region 2 showed a maximum variation of 3%,. The values for region 3
are thought to be accurate to 59,

The results for an initial temperature 7, of 290°K are shown in
figures 3, 4 and 5. Conditions after one, two and three shocks are plotted
against initial shock strength and compared with the perfect-gas solutions.
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After two reflections only (7 = 3), the perfect-gas solutions diverge from
the air values for initial shock strengths greater than two. Table 1 presents
a comparison at various piston speeds.

Thus perfect-gas performance calculations for shock tubes of the
multiple reflection type are invalidated and real-gas tables must be used.
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Figure 3. Pressure vs shock strength. 7 and 00iw refer to the values of p,

(w = 1 atmos.). The curve for p, = 0-17 lies between the other two curves
for air and has been omitted for the sake of clarity.

Piston Perfect gas Air (p, = 0:017)
speed

{ft./sec) | ps/po | Ts/To | psloe| Ds/te | Ts/To| pslpa
2 000 90 5-1117-5 90 4-8 2040
4 000 595 | 153370 600 | 106 | 570
6000 |1500 ] 31-0}46-0] 1900 | 16-8 | 107-0
8000 [2700 | 53-4]51-0| 5300 | 23-0 | 158-0
10000 {4300 | 83-0|52-5{11300 | 28-2 | 222-0
12000 {6100 | 118-0 | 53-0 118900 | 33-0 | 292-0

Table 1.
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Figure 4. Density vs shock strength.
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Figure 5. Temperature vs shock strength.
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