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A note on the compression of air through repeated 
shock waves 

By J. L. STOLLERY and D. J. MAULL 
Defiartment of Aeronautics, Imperial College, University of London 

(Receizled 10 M a y  1958) 

SUMMARY 
The results of calculations of the compression of air by 

repeated shock waves are compared with the perfect-gas values 
given by Evans & Evans (1956). The comparison emphasizes 
the increasing divergence of real from perfect-gas results as 
shock strengths are raised. The equations relating conditions 
across a shock wave are obtained in a convenient form for 
solution using a Mollier diagram. 
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Figure 1. The displacement u s  time diagram. 

Figure 1 shows the problem considered. A piston instantaneously 
accelerated to a velocity up, which is subsequently held constant, generates 
a shock wave. The wave is reflected from the closed end and the piston 
face. The air pressure, density and temperature rise non-isentropically 
through the initial and reflected shocks, soon reaching values at which the 
excitation of vibrational modes, dissociation, electronic excitation and 
finally ionization become important. These real-gas effects are taken into, 
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account here by using the Mollier diagram of Feldman (1957) prepared 
from the real-air tables of Hilsenrath & Beckett (1956). All viscous, heat 
transfer and relaxation effects are neglected and the flow is assumed to be 
one-dimensional. 

The notation is as follows. 
An integer, referring to a flow region in the time-displacement 
diagram (figure 1). Thus H,, p,, p n  and T, are the enthalpy, 
density, pressure and temperature in the nth region. The nth 
shock wave moves into the (n  - 1)th region and has the nth 
region behind it. 

Velocity of the nth shock wave. 

Flow velocity in the nth region (un = up for n odd, u, = 0.1 
for n even). 

Velocity relative to the shock wave. 
Shock strength = (initial shock velocity)/(speed of sound in 
region 0) = Ul/ao. 

A pressure of one atmosphere. 
The equations for a stationary shock wave are: 

(1) 
momentum P o f P o 4  = P l + P l Q ; ,  (2 ), 
continuity Po 40 = P 141. (3 

H0+1 2 - H + 1  2 
2 4 0  - 1 241,  energy 

These may be used for a moving shock wave by superposition of velocities, 
giving for the initial shock wave 

Since u1 = up, the above three equations yield 
Qo = Ul, 41 = Ul-u,.  

In the same way the 
are ,obtained : 

(4)1 p , - p ,  = u;(=), u, = UP 

P 1 - P o  1 - ( P O / P l )  * 

following equations for the first reflected shock 

Similar formulae may be obtained for further shock reflections. 
general forms of the equations are : 

The 

(+ for n odd, - for n even). (8) 
T Up 

1 - ( P n - d P n  1 
u, = 

On the Mollier diagram, figure 2, enthalpy is plotted against entropy 
for lines of constant pressure, lines of constant density and lines of constant 

Z T 2  



652 

temperature. Thus any two of these properties defines a point on the 
.diagram. Given the initial conditions in region 0 and a value for M, 
(or piston speed), two values for p1 are chosen. The two corresponding 
values of Ifl calculated from (4) are plotted on the Mollier diagram, and 
the points joined by a straight line. The two values for the pressure p ,  
from (4) are also plotted, and the line linking these points will cut that 
joining the enthalpy values if the chosen densities are reasonable. The 
point of intersection gives the approximate values for conditions in 
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Figure 2. Mollier diagram showing method of solution. 

region 1. The approximation may be improved by choosing two new 
density values just either side of the first intersection point and repeating 
the construction. With a little experience this becomes unnecessary. 
Now, knowing conditions in region 1, those in region 2 follow from (5) on 
using the same graphical construction. Similarly the method can be 
used for the other regions. The process is then repeated for further values 
of Ms. A comparison with Feldman’s electronically-computed values 
for region 2 showed a maximum variation of 3%. The values for region 3 
are thought to be accurate to 50,b. 

The results for an initial temperature To of 290°K are shown in 
figures 3 ,  4 and 5. Conditions after one, two and three shocks are plotted 
against initial shock strength and compared with the perfect-gas solutions. 
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After two reflections only (n  = 3), the perfect-gas solutions diverge from 
the air values for initial shock strengths greater than two. Table 1 presents 
a comparison at various piston speeds. 

Thus perfect-gas performance calculations for shock tubes of the 
multiple reflection type are invalidated and real-gas tables must be used. 
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Figure 3. Pressure vs shock strength. w and 0.01~ refer to the values of p ,  

The curve for Po = 0 . 1 ~  lies between the other two curves (T = 1 atmos.). 
for air and has been omitted for the sake of clarity. 

Piston 
speed 

(ft./sec) 

2000 
4000 
6000 
8000 

10000 
12000 

Perfect gas Air (Po = O*Olm) 

P s h  TdTo P d P o  PdPo TdTo P3IPo 

90 5.1 17.5 90 4.8 20.0 
595 15.3 37.0 600 10.6 57-0 

1500 31.0 46.0 1900 16-8 107.0 
2700 53.4 51.0 5300 23.0 158.0 
4300 83.0 52.5 11 300 28.2 222.0 
6100 118.0 53.0 18900 33.0 292.0 

--___--__ 
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Figure 5.  Temperature ns shock strength. 
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